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Terminal oxo complexes of the late-transition-metal elements
have been proposed as possible intermediates for oxidations
catalyzed by these elements and in technologies where these
elements encounter O2 or other oxidants. Despite considerable
progress in late-transition-metal-ligand multiple bond chemistry,1

no high d-electron count late-transition-metal-oxo complexes were
known until the recently reported Pt-oxo complex K7Na9[PtIVO-
(OH2)(PW9O34)2] (1),2 because high d-electron counts destabilize
the metal-oxo unit.3-6 Pt-oxo species may well be key intermediates
in functioning automobile catalytic converters, fuel cell electrodes,
and Pt catalysts for O2-based green organic oxidations.7 A Pd-oxo
complex would also be unprecedented and relate to significant
Pd-based catalytic chemistry and technology (supported Pd-based
catalytic converters and oxidation catalysts).7 We now report a
very unique Pd-oxo compound, K10Na3[PdIVO(OH)WO(OH2)-
(PW9O34)2] (2). This complex, prepared by a route altered from
that for 1, has a structure quite distinct from that of1.

The reaction of Pd(II) (from PdSO4) with [A-R-PW9O34]9- in
0.25 M sodium acetate/0.25 M acetic acid (pH) 4.9) yields the
kinetically precipitated (with KCl) product [PdII

3(PW9O34)2]12-. This
complex undergoes a rapid, stepwise loss of Pd(II) in acidic media
to form [PdIIWO(OH2)(PW9O34)2]12-, based on31P and183W NMR
studies performed by Knoth and co-workers on the Zn(II) analogue.8

In the final step, Pd(II) is oxidized by O2 to give the final product
K10Na3[PdIVO(OH)WO(OH2)(PW9O34)2] (2).9

Crystallographic studies of2 establish that the Pd center is
coordinated by a tetradentate, clam shell-like polytungstate
[P2W19(OH2)O69]14- ligand that defines a square equatorial plane
(Figure 1).10 A very short axial PddO bond is trans to a Pd-OH
bond. The oxo moiety is located in a sterically protected cavity
between two [A-R-PW9O34]9- units that are fused together by a
single [WO(OH2)]4+ center. The Pd atom is displaced out of the
O4 equatorial plane (into the central cavity) by 0.10 Å.11a A total
of 13 countercations were located by X-ray crystallography and
confirmed by duplicate elemental analyses.9 Anions other than2
are clearly absent in the lattice (and the absence of Cl- was
confirmed by elemental analyses), consistent with the+4 oxidation
state of Pd and an overall charge of-13 on the molecule. In
addition, the diamagnetism of2 (based on room-temperature

magnetic susceptibility measurements and31P NMR) argues for a
d6 Pd(IV) and against a d8 Pd(II) or d4 Pd(VI) (for a localC4V metal
center).12 There are two lines of evidence for OH- as the ligand
trans to the oxo unit. First, the 1.99(2) Å bond length is more
consistent with a Pd-OH bond than PddO or Pd-OH2 bonds.
Second, elemental analyses and X-ray crystallography establish that
the overall charge of the molecule is-13.11b

Three data sets of2 (collected at 30, 90, and 173 K) indicate
that the PddO bond length is 1.60-1.63( 0.03 Å.10 The final R
values forI > 2σ(I) are in close agreement with those for which
all intensities are considered, and there is no positional disorder
(including OdPd-OH/OH-PddO disorder). However, the oxo and
hydroxo ligands coordinated to Pd could only be refined at 50%
occupancy (rather than the customary 100%).13a

The unprecedented and controversial nature of the title claim, a
Pd-oxo unit,13b combined with the uncertainty from the collective
X-ray structures argue strongly that an independent unequivocal
structural method is needed to assess the Pd-oxo distance. This is
true despite the fact that31P NMR and elemental analysis data
suggest that only2 is present in the unit cell. In this context, we
provide Pd K-edge extended X-ray absorption fine structure
(EXAFS)14adata that address both the crystallographic disorder and
the unusually short PddO bond distance.
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Figure 1. Combination polyhedral/ball-and-stick representation of2. The
WO6 and PO4 polyhedra are shown in gray and pink, respectively. The Pd
and O atoms are shown in light blue and red, respectively. The bond
distances given are for the 173 K data set and are slightly different for the
30 and 90 K data (see Table S2 in the SI for details).
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Thek3-weighted EXAFS data for2 and the corresponding Fourier
transform are shown in Figure 2. Theoretical phase and amplitude
parameters for the fit were generated by FEFF,14b using the
crystallographic parameters of2 for the initial model. The best fit
is obtained with five Pd-O bond distances of 1.96( 0.03 Å and
one Pd-O bond distance of 1.68( 0.03 Å (see Table S3 in the
SI). Therefore, the EXAFS data support the crystallographic
conclusions (i.e., a Pd-O bond distance of 1.60-1.63( 0.03 Å)
within experimental error, despite the disorder (occupancy) prob-
lems that adversely affect the precision of the X-ray diffraction
results.

Finally, 17O NMR experiments run on an enriched15a sample of
2 suggest the solid-state structure is maintained in solution. Two
peaks at 330 and 570 ppm (relative to D2O at 0 ppm) are attributable
to the hydroxo and oxo ligands of Pd, respectively. The two peaks
are assigned based on the established correlation between downfield
chemical shift and oxygenπ-bond order15a and the fact that they
are not observed in the isostructural complex [(WO(OH2))2-
(PW9O34)2]10- (see Figure S4 in the SI).15b

In conclusion, a long-proposed but previously unknown Pd-oxo
unit has now been prepared and fully characterized. An important
implication of the isolation and characterization of a second
structural family of high d-electron count late-transition-metal-oxo
complexes is that1 and 2 are not unique but rather are the first
two members of a previously unrecognized class of coordination
complexes.
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Figure 2. PdK-edge EXAFS spectra (left) and the corresponding nonphase
shift corrected Fourier transform magnitudes (right) for2: black line,
experimental data; red line, best fit.
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